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A. COVID-19 pandemic in top 8 affected countries and Australia

As of 21 March 2020, when significant intervention measures were introduced in Australia, over 285,000
cases have been confirmed worldwide, causing more than 11,500 deaths; and in a month, by 23 April, the
total number has grown to exceed 2.628 million cases, with more than 183,400 deaths [1, 2]. By 21 March
2020, the disease established a sustained local transmission in many countries around the globe, with more
than 180 countries and territories affected, including Italy, Spain, Iran, the United States, Germany, France,
and South Korea as the top eight affected nations [1, 2].

The scale of the COVID-19 pandemic has grown several orders of magnitude in a matter of weeks, from
hundreds to thousands to tens of thousands, with the rate of these transitions varying across countries.
Of particular interest to our study is the time periods when the epidemics are sustained locally in these
countries, but before the effects of adopted intervention strategies are fully felt. One immediate observation
is that during this period, the growth rate of cumulative incidence in many of the traced national epidemics
is averaging within the range between 0.2 and 0.3 per day, that is, there are 20% to 30% daily increases in
new cases on average. This is particularly evident for Spain, France, and Germany (Supplementary Fig. 2),
as well as China, Iran and Italy (Supplementary Fig. 1). These average estimates provide approximate
“invariants” and reduce uncertainty around key epidemiological parameters, required to calibrate disease
transmission models, before investigating possible effects of various intervention policies.

Supplementary Figures 1 and 2 trace cumulative incidence C, incidence, and daily growth rate of cu-
mulative incidence Ċ = [C(n + 1) − C(n)]/C(n), for time step n, for the top eight affected countries (as
of 21 March 2020): China, Iran, Italy, South Korea (Supplementary Fig. 1), Spain, Germany, France, USA
(Supplementary Fig. 2). The time series begin from the day when the total number of confirmed cases
exceeds five. Supplementary Figure 3 traces these time series for Australia. We reiterate that the fraction
of imported cases in the overall transmission has been fairly high in Australia, dominating the community
transmission, and so we paid particular attention to the daily growth rate in countries where the disease
was also introduced predominantly through the air travel (i.e., down-weighting the rates in China and South
Korea).

B. Natural history of disease

The natural history of disease is a description of the disease progression over time from exposure to re-
covery, in a single individual and in the absence of treatment. In the past, the AceMod simulator has been
used to model pandemic influenza within Australia, and here we detail modifications of the natural history
aimed to account for COVID-19 specifics, captured in AMTraC-19. We define several agent states: sus-
ceptible, latent, infectious symptomatic, infectious asymptomatic, and recovered. Consequently,
the natural history model considers three distinct phases. The first phase is the latent period during which
individuals are infected but unable to infect others, set in the COVID-19 model as two days. The second
phase is the period characterised by an exponentially increasing infectivity, from 0% to 100% over three days
(see Supplementary Fig. 4). The day on which an individual becomes ill is chosen probabilistically: 30% of
agents will change their state to symptomatic one day after exposure, 50% after two days, and the remaining
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Supplementary Figure 1: Early epidemic curves: China, Iran, Italy, South Korea. Cumulative incidence (log scale),
incidence (log scale), and daily growth rate of cumulative incidence (up to 19 March 2020). Days: since the day when the total
number of confirmed cases exceeded five. Data sources: [3].
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Supplementary Figure 2: Early epidemic curves: Spain, Germany, France, USA. Cumulative incidence (log scale),
incidence (log scale), and daily growth rate of cumulative incidence (up to 19 March 2020). Days: since the day when the total
number of confirmed cases exceeded five. Data sources: [3].
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Supplementary Figure 3: Early epidemic curves: Australia. Cumulative incidence (log scale), incidence (log scale), and
daily growth rate of cumulative incidence (up to 24 March 2020). Days: since the day when the total number of confirmed
cases exceeded five. Data sources: [3].
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20% will become symptomatic on day three. In order to reflect the presence of mildly symptomatic cases,
the model does not follow a canonical definition of an incubation period (the period between exposure to an
infection and the appearance of the first symptoms). Instead, it distributes the onset of symptoms across the
agents, and increases their infectivity to a peak over a number of days. The time to peak, five days, is chosen
to align with an empirically estimated average incubation period, while mild symptoms may be detectable
even before the peak. Upon reaching its peak, the infectivity decreases linearly over 12 more days (third
phase), until the recovery, with immunity, occurs after 17 days. Finally, we assume that asymptomatic cases
are 30% as infectious as symptomatic cases. Unlike influenza, where we assume that the asymptomatic
fraction is the same for adults as for children, for the SARS-COV-2 coronavirus we assume that while 67%
of adult cases are symptomatic, a significantly lower fraction (13.4%) is symptomatic in children.
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Supplementary Figure 4: Model of the natural history of COVID-19. Profile of the infectivity, for both symptomatic
and asymptomatic cases. After two days, individuals become infectious, with the infectivity rising exponentially until its peak
at five days. After this peak, the infectivity linearly decreases, with full recovery occurring at 17 days. At comparable points
within the natural history of disease, asymptomatic individuals are 30% as infectious as symptomatic individuals.

C. Transmission model and reproductive number

The primary dynamics of AMTraC-19 are the infection transmissions. At each time-step the simulator
determines the probability of infection for an individual, based on the infection levels in each of their
mixing contexts. At each time step we consider all daytime or all nighttime contexts. Let Xi(n) be
a random variable describing the state of individual i at time step n. At each time step we calculate
pi(n) = P (Xi(n) = latent|Xi(n − 1) = susceptible), the probability that a susceptible individual is
infected at n. Each individual belongs to a number of mixing groups with which an agent interacts, denoted
g ∈ Gi(n), as well as an associated static set of agents Ag. We define the context-dependent probability pgj→i

that infectious individual j infects susceptible individual i in context g in a single time step. The probability
that a susceptible agent i is infected at a given time step n is thus calculated as:

pi(n) = 1−
∏

g∈Gi(n)

 ∏
j∈Ag\i

(1− pgj→i(n))

 . (1)

We also define a scaling factor κ (proportional to the reproductive number R0), as a free parameter which
allows us to vary the contagiousness of simulated epidemic scenarios:

pgj→i(n) = κ f(n− nj | j) qgj→i (2)

where nj denotes the time when agent j becomes infected, and qgj→i is the probability of transmission
from agent j to i at the infectivity peak, derived from the transmission or contact rates. The function
f : N → [0, 1] represents the infectivity of case j over time: f(n − nj | j) = 0 when n < nj , implementing
the profile shown in Supplementary Fig. 4.
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Supplementary Table 1: The input parameters xi and output variables yj : local sensitivity analysis with the response |Fi,j |.
Source data are provided as Supplementary Data 1.

Parameter Default Range R0 (y1) Tgen (y2) Ċ (y3) Ac (y4)

µ∗i,1 σi,1 µ∗i,2 σi,2 µ∗i,3 σi,3 µ∗i,4 σi,4

Time-to-peak, days (x1) 5 [4, 7] 0.47 0.61 1.32 1.27 0.09 0.01 0.002 0.0002

Recovery period, days (x2) 12 [7, 21] 2.79 1.13 5.50 0.66 0.08 0.01 0.014 0.0005

Asymptomatic infectivity (x3) 0.3 [0.05, 0.45] 0.69 0.75 2.42 1.48 0.10 0.01 0.004 0.0004

Symptomatic adults (x4) 0.669 [0.5, 0.8] 0.83 0.60 0.65 0.54 0.06 0.01 0.033 0.0001

Symptomatic children (x5) 0.134 [0.05, 0.25] 0.43 0.55 0.38 0.45 0.07 0.01 0.085 0.0001

Supplementary Table 2: The input parameters xi and output variables yj : global sensitivity analysis with the effect |Fi,j |.
Source data are provided as Supplementary Data 2.

Parameter Range R0 (y1) Tgen (y2) Ċ (y3) Ac (y4)

µ∗i,1 σi,1 µ∗i,2 σi,2 µ∗i,3 σi,3 µ∗i,4 σi,4

Time-to-peak, days (x1) [4, 7] 0.22 0.14 0.98 0.26 0.04 0.01 0.003 0.0038

Recovery period, days (x2) [7, 21] 2.73 0.30 5.12 0.48 0.05 0.02 0.015 0.0165

Asymptomatic infectivity (x3) [0.05, 0.45] 0.88 0.41 2.19 0.81 0.08 0.02 0.005 0.005

Symptomatic adults (x4) [0.5, 0.8] 0.94 0.36 0.89 0.55 0.02 0.01 0.042 0.027

Symptomatic children (x5) [0.05, 0.25] 0.10 0.11 0.12 0.09 0.02 0.01 0.089 0.0117

This model assumes that for all contexts, the probabilities of infection over a given time period are known.
In cases where this information is unavailable, we instead utilise contact rates reported and calibrated in
previous studies. Thus, a majority of the transmission and contact probabilities follow previous work on
pandemic influenza [4, 5, 6, 7, 8, 9], see Supplementary Tables 7 and 8 in Appendix E. Full details regarding
their application can be found in [8].

In this study we used “the attack rate pattern weighted index case” method to calculate R0 [10, 11]. The
method is based on age-specific attack rates, computed as averages over many simulation instances, in order
to reduce the bias in determining a typical index case, present due to population heterogeneity. As argued
in [12, 11], given the correlation between age group and population structure, the age-stratified weights,
assigned to secondary cases produced by a sample of index cases, improve the estimation of the reproductive
number R0. Possible outliers were removed by the interquartile (IQR) method, using 1.5 IQR rule, which
makes no assumptions about an underlying distribution. Five age groups were used: [0–4, 5–18, 19–29,
30–64, 65+], with the age-dependent attack rates [0.02, 0.04, 0.18, 0.58, 0.18], producing the corresponding
age-dependent reproductive numbers: [1.16, 3.44, 2.63, 2.65, 3.35], with the weighted average of the adjusted
reproductive number R0 = 2.77, with 95% CI [2.73, 2.83], constructed from the bias corrected bootstrap
distribution (sample size 6,315).

D. Results of sensitivity analysis

D.1. Sensitivity of the model

Results of the local sensitivity analysis are summarised in Supplementary Table 1. The analysis shows
that the mean values µ∗2,1 and µ∗2,2, measuring the influence of the recovery period on R0 and Tgen respec-
tively, are larger than the means of the other responses |Fi,1| and |Fi,2|. This indicates that the reproductive
ratio and the generation period are most sensitive to changes in the recovery period (x2). Given the range
of the recovery period, varied between 7 and 21 days, each discretisation step ∆ = 0.1 corresponds to the
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recovery period’s change of 1.4 days. For each 1.4-day variation, the reproductive ratio changes by 0.279 on
average, resulting in the mean response value µ∗2,1 = 2.79. Over the ten steps, these variations extend the
reproductive ratio by approximately 0.2 to 0.4 per step, from R0 = 1.81 (x2 = 7 days) to R0 = 4.59 (x2 = 21
days), mostly linearly, as shown in Supplementary Fig. 5.b. Similarly, these variations (linearly) extend the
generation period by approximately 0.4 to 0.6 per step, from Tgen = 5.51 (x2 = 7 days) to Tgen = 11.01
(x2 = 21 days), Supplementary Fig. 5.b. For each discretisation step, the estimates of R0 and Tgen are
produced by “the attack rate pattern weighted index case” method described in section C, with n = 6, 655
runs on average.

Changes in the other input parameters result in smaller effects on R0 and Tgen, as shown in Supplemen-
tary Fig. 5. Overall, despite the sensitivity of the first two output variables to changes in the recovery period
(x2), their variations are within the expected ranges, demonstrating robustness of the model in terms of the
reproductive ratio and the generation period.

The other two output variables, the daily growth rate of cumulative incidence at day 50, Ċ, and the
attack rate in children, Ac, show small sensitivity to all input parameters, indicated by the low means µ∗i,3
and µ∗i,4. The asymptomatic infectivity (x3) is the parameter influencing the growth rate Ċ slightly more
than other inputs. In response to varying x3, the daily growth rate at day 50 changes between 0.11 and 0.19,
which is an acceptable range, see Supplementary Fig. 5.c. Not surprisingly, the fraction of symptomatic
cases among children (x5) is the parameter with the highest effect on the children attack rate Ac. When x5
is varied, the attack rate in children changes between 2% and 11%, again within an acceptable range, see
Supplementary Fig. 5.e. Thus, all input parameters are weakly influential with respect to output variables
y3 and y4.

Supplementary Figure 5 shows results of the sensitivity analysis of the model, in terms of five input
parameters: the time-to-peak (days, x1), the recovery period (days, x2), the probability of transmission for
asymptomatic agents. i.e., asymptomatic infectivity (x3), the fraction of symptomatic cases in adults, i.e.,
symptomatic adults (x4), and the fraction of symptomatic cases in children, i.e., symptomatic children (x5).
For each of the input parameters, we trace two output variables which are most affected by this specific input,
selected based on ranking of responses |Fi,j | using the means µ∗i,j , as reported in Supplementary Table 1.
These dependencies are mostly linear, and the output variables are bounded within their anticipated ranges,
indicating robustness of the model.

Supplementary Table 2 summarises results of the global sensitivity analysis using the Morris method,
carried out with r = 20 repeats and k = 5 inputs, resulting in 120 parameter combinations, i.e., r(k + 1),
with inputs varied over l = 10 discretisation levels. When estimating R0 and Tgen for each parameter
combination, we use “the attack rate pattern weighted index case” method described in section C, with
n = 6, 702 runs on average. For other two output variables Ċ and Ac, we run simulations m = 10 times for
each parameter combination, averaging the results over these runs before computing the sensitivity effects.

In concordance with the LSA, the reproductive ratio R0 and the generation period Tgen are most sensitive
to changes in the recovery period, but also stay within the expected ranges (e.g., R0 varies between 1.33
and 4.96, and Tgen varies between 3.78 and 11.79). The daily growth rate of cumulative incidence at day 50,

Ċ, and the attack rate in children, Ac, show small global sensitivity to all input parameters, despite strong
parameter interactions affecting Ac, as evidenced by the higher global σi,4.

In summary, the analysis shows that the model is robust to changes in the input parameters, with the
highest sensitivity detected in the reproductive ratio and the generation period, in response to the recovery
period. Even for the most affected variables, the resulting variations are limited within their expected
ranges.

D.2. Sensitivity of the model outcomes

We also investigate whether the model outcomes are sensitive with respect to three context-dependent
micro-distancing levels: within households, community, and workplace/school environments. Two specific
targets are considered:

(i) the epidemic dynamics traced along 90% SD compliance,

(ii) the transition across the levels of SD compliance, in the range between 70% and 80% levels.
7
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Supplementary Figure 5: Local sensitivity dependencies of the two most affected output variables for each input
parameter. For each xi, the output variables yj with the two highest mean values µ∗i,j are shown, cf. Supplementary Table 1.
The default value of each input parameter is shown with a vertical line. Source data are provided as Supplementary Data 1.

The epidemic dynamics traced along 90% SD compliance is of primary relevance (cf. Fig. 3 of the main
manuscript), and so sensitivity of the corresponding outcomes, registered at the end of suppression, is
important to establishing the applicability range of the model. The transition in the range between 70%
and 80% levels is our main policy-informing result (cf. Fig. 4 of the main manuscript), and its robustness is
crucial for our study. For each target, the output variables of interest include the prevalence and cumulative
incidence, registered at the end of simulated suppression period.

Each level of micro-distancing is varied by 5% within a 50% range, in proximity of the default values,
specified in Supplementary Tables 3 and 4. Using discretisation step ∆ = 0.1 and 10 runs per step, we
compute the corresponding responses of prevalence and cumulative incidence under 90% SD compliance
(Supplementary Table 3), as well as the responses of the difference 	 between the outcomes under 70% and
80% SD compliance, for both prevalence and cumulative incidence (Supplementary Table 4).

We conclude that both targets are much more sensitive to variations in the micro-distancing levels within
the workplace/school environments, and least sensitive to micro-distancing within households. Importantly,
the sensitivity dependencies are linear around the default values of input parameters, as shown in Supple-
mentary Figures 6 and 7. This indicates that the model outcomes quantifying the contribution of social
macro-distancing to the disease control are robust to the levels of micro-distancing, within certain levels.
The onset of non-linearity, seen in Supplementary Figures 6.b and Fig. 6.c, as well as in Supplementary Fig-

8



Supplementary Table 3: Local sensitivity of the epidemic dynamics under 90% SD compliance to micro-distancing levels. Source
data are provided as Supplementary Data 1.

Level of Default Range Prevalence Cumulative Incidence

micro-distancing in µ∗,×103 σ,×103 µ∗,×103 σ,×103

households 100% [75%, 125%] 0.400 0.061 7.919 1.009

community 50% [25%, 75%] 2.449 0.291 15.966 1.895

workplace/schools 0% [0%, 50%] 3.168 2.157 84.106 5.017

Supplementary Table 4: Local sensitivity of the transition between 70% and 80% SD levels to micro-distancing levels. Source
data are provided as Supplementary Data 1.

Level of Default Range 	 Prevalence 	 Cumulative Incidence

micro-distancing in µ∗,×103 σ,×103 µ∗,×103 σ,×103

households 100% [75%, 125%] 11.815 1.075 38.739 3.901

community 50% [25%, 75%] 16.089 2.511 46.822 5.539

workplace/schools 0% [0%, 50%] 175.140 26.454 327.180 51.540

Supplementary Table 5: Global sensitivity of the epidemic dynamics under 90% SD compliance to micro-distancing levels.
Source data are provided as Supplementary Data 2.

Level of Range Prevalence Cumulative Incidence

micro-distancing in µ∗,×103 σ,×103 µ∗,×103 σ,×103

households [75%, 125%] 0.463 0.670 4.550 3.020

community [25%, 60%] 0.951 0.658 8.026 3.397

workplace/schools [0%, 25%] 0.900 1.067 5.980 3.937

Supplementary Table 6: Global sensitivity of the transition between 70% and 80% SD levels to micro-distancing levels. Source
data are provided as Supplementary Data 2.

Level of Range 	 Prevalence 	 Cumulative Incidence

micro-distancing in µ∗,×103 σ,×103 µ∗,×103 σ,×103

households [75%, 125%] 6.162 4.740 14.732 12.136

community [25%, 60%] 10.982 4.530 20.825 8.769

workplace/schools [0%, 25%] 17.749 8.248 38.416 16.504
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ures 7.b and 7.c, marks the range of applicability in terms of the corresponding micro-distancing parameters.
Specifically, the levels of micro-distancing within the workplace/school environments should not exceed 25%
(Supplementary Figures 6.c and 7.c), and within the community should stay below 60% (Supplementary
Figures 6.b and 7.b), as going beyond these levels increases the sensitivity of the results in a non-linear
fashion.

This is further confirmed by the global sensitivity analysis carried out using the Morris method, applied
to reduced parameter ranges for the community and workplace/school environments. For each target,
the analysis uses r = 20 repeats and k = 3 inputs (varied over l = 10 discretisation levels), resulting
in 80 = r(k + 1) parameter combinations, each simulated m = 10 times. These results, summarised
in Supplementary Tables 5 and 6, show that the targets are least sensitive to micro-distancing within
households. Another notable observation is that there are limited interactions among micro-distancing
parameters, as evidenced by moderate values of σ. Importantly, the model outcomes are robust to globally
varying micro-distancing in all social contexts, when these variations are within the identified ranges of
applicability.
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Supplementary Figure 6: Local sensitivity of prevalence and cumulative incidence. The sensitivity is traced for 90% SD
compliance, coupled with case isolation, home quarantine, and international travel restrictions, to changes in micro-distancing
levels in a households, b community, c workplace/school environments. The default value of each input parameter is shown
with a vertical line. Source data are provided as Supplementary Data 1.
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Supplementary Figure 7: Local sensitivity of changes 	 in prevalence and cumulative incidence. The sensitivity is
traced across 70% and 80% SD levels, coupled with case isolation, home quarantine, and international travel restrictions, to
changes in micro-distancing levels in a households, b community, c workplace/school environments. The default value of each
input parameter is shown with a vertical line. Source data are provided as Supplementary Data 1.

E. Transmission and contact probabilities

Following [8], with some minor adjustments, the contact and transmission probabilities are given in
Supplementary Tables 7 and 8, respectively.

F. Population generation, demographics and mobility

Prior to the AMTraC-19 simulations, a surrogate population is generated to match coarse-grained
distributions arising from the 2016 Australian census, published by the Australian Bureau of Statistics
(ABS). In generating this surrogate population, we use Statistical Areas (SA1 and SA2) level statistics,
comprising age, household composition and workplaces. Individuals in the population are separated into 5
different age groups: preschool aged children (0-4), children (5-18), young adults (19-29), adults (30-65) and
older adults (65+). Along with these assigned characteristics, individuals are assigned a number of mixing
contexts based on the census data. The model uses a discrete-time simulation, where each simulated day is
separated into two distinct portions: ‘daytime’ and ‘nighttime’. In the daytime, workplace and school-based
mixing are considered, whereas nighttime mixing considers the household transmissions, as well as other
local spread at the neighborhood (SA1) and community (SA2) levels.

The population generation begins with the contexts needed for nighttime mixing, which can be thought
of as “home regions”. The simulation iterates through each SA1, creating a cumulative density function
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Supplementary Table 7: Daily contact probabilities cgj→i for different contact groups g, reported by [6], reproduced from [8],
except for the rates in household clusters. The age is assigned an integer value.

Mixing group g Infected individual j Susceptible individual i Contact probability cgj→i

Household cluster Child (≤ 18) Child (≤ 18) 0.05

Child (≤ 18) Adult (≥ 19) 0.05

Adult (≥ 19) Child (≤ 18) 0.05

Adult (≥ 19) Adult (≥ 19) 0.05

Working Group Adult (19-64) Adult (19-64) 0.05

Neighbourhood Any Child (0-4) 0.0000435

Any Child (5-18) 0.0001305

Any Adult (19-64) 0.000348

Any Adult (≥ 65) 0.000696

Community Any Child (0-4) 0.0000109

Any Child (5-18) 0.0000326

Any Adult (19-64) 0.000087

Any Adult (≥ 65) 0.000174

Supplementary Table 8: Daily transmission probabilities qgj→i for different contact groups g, reported by [7], reproduced from

[8]. The age is assigned an integer value.

Contact Group g Infected Individual j Susceptible Individual i Transmission Probability qgj→i

Household size 2 Any Child (≤ 18) 0.0933

Any Adult (≥ 19) 0.0393

Household size 3 Any Child (≤ 18) 0.0586

Any Adult (≥ 19) 0.0244

Household size 4 Any Child (≤ 18) 0.0417

Any Adult (≥ 19) 0.0173

Household size 5 Any Child (≤ 18) 0.0321

Any Adult (≥ 19) 0.0133

Household size 6 Any Child (≤ 18) 0.0259

Any Adult (≥ 19) 0.0107

School Child (≤ 18) Child (≤ 18) 0.000292

Grade Child (≤ 18) Child (≤ 18) 0.00158

Class Child (≤ 18) Child (≤ 18) 0.035
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(CDF) describing the size and type of households, based on two dependent probability distributions defined
by the ABS. Given this CDF, the procedure begins to randomly generate households, with the generation
of agents occurring during this process. Once a household is generated for an SA1, agents are generated to
match the size and type of the household (e.g., a single parent family of size four will generate one adult
and three children). In order to generate attributes for this surrogate population, the simulation then reads
in CDFs describing the population statistics of the given SA, with each of these agents being assigned some
attributes based on these population distributions.

Following the population of the home regions, the simulator assigns work and school regions to individuals
within the population. This process is based on the “Travel to work” data published by the ABS, which
defines a number of individuals N living in home region i and working in region j. In order to satisfy each
of these “worker flows”, a number of unassigned working-age individuals (19-64 years old) in region i is
selected at random and assigned to work in location j. School allocation, on the other hand, is somewhat
more complicated as the detailed data about student home locations are not available from the ABS. Instead,
we use the available data from the Australian Curriculum, Assessment and Reporting Authority (ACARA),
detailing the locations of schools, along with a proximity based model which biases children allocation
towards closer schools. More detail about student allocation can be found in previous studies [9].

G. Effects of school closures

Here we compare effects of school closures, added to the case isolation and home quarantine, for two
levels of parents’ commitment to stay home: 25% and 50%. That is, the proportion of children supervised at
home during school closure by one of their randomly chosen parents varies from 25% to 50% (Supplementary
Fig. 8). Focussing on the 25% commitment, we also trace the effects of school closures for two specific age
groups: children and individuals over 65 years old (Supplementary Figures 9 and 10 respectively).

At this stage we revisit school closures in context of social distancing. As shown in Supplementary
Fig. 11, addition of the SC strategy to SD set at 70% generates a reduction in incidence, albeit not lasting
and progressing at a higher level than such reductions observed at 80% and 90% SD levels, coupled with
school closures. This suggests that another potential but transient benefit of school closures is that it may
“compensate” for about 10% lack of SD compliance.

H. Model validation

H.1. A delayed introduction of strong social distancing measures

On 21 March 2020, the number of confirmed COVID-19 cases in Australia crossed 1,000. This coincided
with the ban on all international arrivals of non-residents, non-Australian citizens, put in place the night
before. The primary scenario considered in this study introduces a social distancing policy, at varying degrees
of compliance, triggered by crossing the threshold of 2,000 confirmed cases, exceeded in Australia three days
later, on 24 March 2020, when strong measures (e.g., closures of non-essential services and places of social
gathering) have been introduced. The primary scenario traced at 90% SD, coupled with case isolation
and home quarantine, is well-aligned with the actual epidemic timeline in Australia, as shown in Fig. 3
of the main manuscript, especially in terms of prevalence (Fig. 3.b) and cumulative incidence (Fig. 3.c).
The actual daily incidence data (Fig. 3.a) are more noisy, having been affected, in particular, by separate
clusters linked to infected cruise ships passengers. For example, by 18 April 2020, more than 600 COVID-
19 cases in Australia, i.e., 10% of total cases at the time, have been linked to the Ruby Princess cruise
ship from which 2,700 passengers were allowed to disembark on 19 March [13]. Despite the discrepancy
in tracing the daily cases, our model accurately predicted timings of the incidence peak (Fig. 3.a) and
prevalence peak (Fig. 3.b). In addition, the actual SD levels vary across time, and have been complemented
by other surveillance, distancing and intervention measures, e.g., hotel quarantine of international arrivals,
meticulous testing of health care workers, inter-state border closures, etc., which are not part of our model.
To re-iterate, the model was calibrated by 24 March 2020, and the comparison across the SD levels pointed
to 90% SD as the closest match, but did not change the model parametrization, highlighting its robustness
and predictive power.

13



0 50 100 150 200
0

5

10

15

In
ci

d
en

ce

104a

0 50 100 150 200
0

0.5

1

1.5

2

2.5

P
re

va
le

n
ce

106b

0 50 100 150 200
0

2

4

6

8

C
u

m
u

la
ti

ve
 in

ci
d

en
ce

106c

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

G
ro

w
th

 r
at

e 
o

f 
   

  
cu

m
u

la
ti

ve
 in

ci
d

en
ce

d
CI, HQ and SC
parents at home: 25%
CI, HQ and SC
parents at home: 50%

03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug

03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug

Supplementary Figure 8: Effects of parents’ commitment to stay home during school closures. Increasing parents’
commitment to stay home during school closures (SC) from 25% (solid) to 50% (dashed) does not significantly affect the spread:
a incidence, b prevalence, c cumulative incidence, d daily growth rate of cumulative incidence, shown as average (solid) and
95% confidence interval (shaded) profiles, over 20 runs. The 95% confidence intervals are constructed from the bias corrected
bootstrap distributions. The strategy with school closures (SC) combined with case isolation (CI) and home quarantine (HQ)
lasts 49 days (7 weeks), marked by a vertical dashed line. Restrictions on international arrivals are set to last until the end of
each scenario. The alignment between simulated days and actual dates may slightly differ across separate runs.

14



0 50 100 150 200
0

0.5

1

1.5

2

In
ci

d
en

ce

104a

0 50 100 150 200
0

2

4

6

8

C
u

m
u

la
ti

ve
 in

ci
d

en
ce

105b

0 50 100 150 200
0

0.1

0.2

0.3

0.4

In
ci

d
en

ce
 (

fr
ac

ti
o

n
 o

f 
ch

ild
re

n
)

c

03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug

03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug

0 50 100 150 200
0

0.1

0.2

0.3

A
tt

ac
k 

ra
te

 (
ch

ild
re

n
)

d
NI
CI
CI and HQ
CI, HQ and SC

Supplementary Figure 9: Effects of school closures: children. School closures (SC) delay incidence peak by four weeks,
but increase the fraction of new cases in children around the peak time by 7%, in comparison to case isolation (CI) and home
quarantine (HQ), under international travel restrictions. No interventions: NI. Epidemic curves for children: a incidence,
b cumulative incidence, c fraction of children in incidence, and d fraction of children in cumulative incidence, shown as average
(solid) and 95% confidence interval (shaded) profiles, over 20 runs. The 95% confidence intervals are constructed from the bias
corrected bootstrap distributions. The strategy with school closures combined with case isolation and home quarantine lasts
49 days (7 weeks), marked by a vertical dashed line. Restrictions on international arrivals are set to last until the end of each
scenario. The alignment between simulated days and actual dates may slightly differ across separate runs.
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Supplementary Figure 10: Effects of school closures: older adults. School closures (SC) delay incidence peak by four
weeks, but do not affect new cases for older adults, in comparison to case isolation (CI) and home quarantine (HQ), under
international travel restrictions. No interventions: NI. Epidemic curves for older adults: a incidence, b cumulative incidence,
c fraction of older adults in incidence, and d fraction of older adults in cumulative incidence, shown as average (solid) and
95% confidence interval (shaded) profiles, over 20 runs. The 95% confidence intervals are constructed from the bias corrected
bootstrap distributions. The strategy with school closures combined with case isolation and home quarantine lasts 49 days (7
weeks), marked by a vertical dashed line. Restrictions on international arrivals are set to last until the end of each scenario.
The alignment between simulated days and actual dates may slightly differ across separate runs.
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Supplementary Figure 11: Effects of school closures combined with social distancing. School closures may temporarily
“compensate” for about 10% lack of social distancing (SD) compliance. A comparison of social distancing strategies, coupled
with case isolation, home quarantine, international travel restrictions, and school closures (SC) or no school closures, across
different compliance levels (70%, 80% and 90%), shown as average (solid) and 95% confidence interval (shaded) profiles, over 20
runs. The 95% confidence intervals are constructed from the bias corrected bootstrap distributions. Duration of each combined
SD and SC strategy is set to 91 days (13 weeks), shown as a grey shaded area. Case isolation, home quarantine and restrictions
on international arrivals are set to last until the end of each scenario. The alignment between simulated days and actual dates
may slightly differ across separate runs.
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Supplementary Table 9: The average differences between early and delayed interventions. A comparison between two scenarios:
early interventions (threshold 1,000 cases) and delayed interventions (threshold 2,000 cases). Each scenario is evaluated over 20
runs. In each run, a day is recorded when the prevalence decreases below a specified criterion in terms of active cases (ranging
from 30 to 50 in increments of 5). Source data are provided as Source Data file.

Criterion Threshold 1,000 Threshold 2,000 Difference

(prevalence) (day) (std. dev.) (day) (std. dev.) (days) (std. dev.)

50 148.1 6.708 172.5 7.345 24.4 9.947

45 151.0 8.079 175.4 7.162 24.4 10.796

40 153.7 8.899 177.6 7.229 23.9 11.465

35 156.7 9.183 181.3 7.987 24.6 12.171

30 161.9 9.520 182.4 6.373 20.5 11.456

Average 23.56 11.167

To evaluate a delayed introduction of strong social distancing measures, we compare these two thresh-
olds, separated by three days, while keeping all other parameters unchanged. Referring to Supplementary
Fig. 12, a delayed response results in higher epidemic peaks, doubling the prevalence in comparison with
the alternative scenario (Fig. 12.b), across different levels of compliance. The cumulative incidence for 90%
SD nearly doubles as well, from around 5,000 total cases, to about 9,000 (Supplementary Fig. 12.c).

We also observe that a three-day delay in introducing strong social distancing measures results in an
approximately four-week lengthening of the required suppression period, confirmed by separate runs with
a longer suppression duration (Supplementary Table 9). The resultant difference (i.e., delay) averages in
23.56 days, with standard deviation of the difference estimated as 11.167 days.

H.2. Forecasting

This model has been used in Australia in a now-casting mode during the period since 24 March 2020.
In the simulation timeline, the threshold of 2,000 cases is crossed on day 50, and if this is aligned with 24
March 2020 on the actual timeline, one may see that the incidence along the 90% SD curve starts to reduce
from day 59 (aligned with early April 2020), Fig. 3.a of the main manuscript, and the prevalence peak is
reached around days 62–65 (aligned with 5–8 April 2020), Fig. 3.b.

The early projections of the timing of actual incidence and prevalence peaks, as well as three-month
ahead forecast of the cumulative incidence in Australia to approach the range of 8,000–10,000 total cases,
have shown a good accuracy, validating the model. Specifically, the agreement between the actual and
simulation timelines appears to be the strongest for 90% SD compliance, applied from 24 March 2020 (i.e.,
primary scenario with 2,000 cases), following a period of weaker compliance between 21 and 24 of March
2020. The predicted cumulative incidence at the end of the suppression period, which maps to the end of
June, averages 9,122 cases with 95% CI [8,898, 9,354], and the range over 20 runs is 8,313 – 10,090 (see
Source Data file). The actual number of total cases in Australia on 30 June 2020 is reported as 7,834 [3].

Significant levels of compliance have been confirmed by the Citymapper Mobility Index, which collates
the usage of the Citymapper app, a worldwide public transit app and mapping service which integrates
data for all urban modes of transport, for planning public transport, walking, cycling, and micromobility
data [14]. These data allow for approximating the extent of social distancing compliance, showing, by the
26th March 2020, a reduction of 80% from the normal mobility levels for both Sydney and Melbourne. There
was a relatively steep drop in mobility to this level, noting that the number of trips taken by residents of
Sydney and Melbourne was around 50% just five days prior. Since this drop to mid-April, the levels of
compliance have remained relatively constant at 80–90%, peaking at 90% for both Sydney and Melbourne
on the 10th April 2020. Comparable levels of social distancing were also inferred from the anonymised
and aggregated mobile phone location data of several million Australians, provided in early April 2020 by
Vodafone, a multinational telecommunications company, to the Australian federal government. These data
showed a reduction of 83% from the normal mobility levels for Sydney, and 82% for Melbourne [15]. A
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national online survey of 1,420 Australian adults, carried out between 18 and 24 March 2020, found that
over the last month 93.4% of respondents followed at least one of six avoidance-related behaviors [16]. In
addition, the ABS survey taken during 1-6 April 2020, showed that during the preceding four weeks, 88.3%
of Australians have been avoiding public spaces (and public events), 98.4% have been keeping distance from
people, and 86.6% cancelled personal gatherings (e.g., with friends or family) [17].

We point out that in Australia, the healthcare sector alone comprises about 6% the population, with
accommodation and food services reaching up to 3.6%, while transport, postal and warehousing sector
occupies 2.6%, and electricity, gas, water and Waste services add another 0.6% [18]. Thus, assuming that
a substantial fraction of employees delivering these essential services cannot work from home, the highest
level of social distance compliance would not exceed 90%.

I. Comparison of SD compliance levels across several state capitals

Differences between 70% and 90% SD compliance levels are visualised in choropleth maps of four largest
Australian Capital Cities: Sydney, Melbourne, Brisbane and Perth (Supplementary Fig. 13). These maps
contrast prevalence numbers resulting from these two compliance levels at day 60.

J. Fractions of symptomatic cases across mixing contexts

Supplementary Table 10 summarises fractions of symptomatic cases for the considered scenarios, across
mixing contexts: households (HH), household clusters (HC), census districts (CD), statistical areas (SA2),
working groups (WG), classrooms (CL), grades (GR), schools (SCH). Notably, a stronger compliance with
social distancing, in addition to case isolation and home quarantine, increases the household fraction from
30.48% (the household fraction under case isolation and home quarantine) to 47.79% (the household fraction
under full lockdown). This is compensated by the corresponding decreases in the infections acquired at the
workplace: from 17.01% to 6.98%, as well as in the school environments: from 12.41% to 6.20%.

Supplementary Table 10: Average context-dependent fractions of symptomatic cases (over 20 runs, rounded to two decimal
places), in %. NI: no intervention, CI: case isolation, HQ: home quarantine, SC: school closures, SD: social distancing. For NI,
CI, HQ and SC: shown at the end of suppression of SC, i.e., after approximately 102 days (including 49 days of suppression).
For SD: shown at the end of suppression of SD, i.e., after approximately 143 days (including 91 days of suppression). The
contexts include households (HH), household clusters (HC), census districts (CD), statistical areas (SA2), working groups
(WG), classrooms (CL), grades (GR), schools (SCH). Source data are provided as Source Data file.

Scenario HH HC CD SA2 WG CL GR SCH

NI 17.88 17.21 25.75 13.89 20.46 1.94 1.46 1.40

CI 28.27 15.00 17.14 9.38 17.37 5.12 3.93 3.78

CI+HQ 30.48 14.31 16.65 9.14 17.01 4.95 3.80 3.66

CI+HQ+SC 26.68 17.02 25.57 14.13 16.22 0.14 0.11 0.11

CI+HQ+SD 10% 30.61 14.88 20.87 11.35 16.54 2.32 1.76 1.67

CI+HQ+SD 20% 32.62 14.80 20.13 10.99 15.17 2.53 1.93 1.83

CI+HQ+SD 30% 34.56 14.60 19.28 10.54 13.88 2.86 2.19 2.09

CI+HQ+SD 40% 36.63 14.34 18.36 10.04 12.55 3.20 2.49 2.38

CI+HQ+SD 50% 38.46 14.17 17.90 9.82 11.33 3.29 2.56 2.48

CI+HQ+SD 60% 40.45 14.11 18.17 9.96 9.85 2.92 2.30 2.23

CI+HQ+SD 70% 42.45 14.07 19.01 10.34 8.24 2.32 1.82 1.75

CI+HQ+SD 80% 44.54 13.81 18.97 10.46 7.09 1.99 1.60 1.54

CI+HQ+SD 90% 46.01 13.30 18.33 9.97 6.85 2.17 1.75 1.63

CI+HQ+SD 100% 47.79 12.78 16.99 9.25 6.98 2.45 1.90 1.85
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Supplementary Figure 12: Effects of delays. A three-day delay in introducing strict social distancing doubles the disease
prevalence. A comparison of social distancing (SD) strategies, coupled with case isolation, home quarantine, and international
travel restrictions, across different compliance levels (70%, 80% and 90%). Two scenarios are contrasted: primary scenario
with the threshold set at 2,000 cases (matching actual numbers on 24 March 2020), and the alternative threshold of 1,000
(matching actual numbers on 21 March 2020). Duration of each SD strategy is set to 91 days (13 weeks), shown as a grey
shaded area for the primary threshold (2,000 cases), and with vertical dashed lines for the alternative threshold (1,000 cases).
Case isolation, home quarantine, and restrictions on international arrivals are set to last until the end of each scenario. Traces
include a incidence, b prevalence, c cumulative incidence, and d the daily growth rate of cumulative incidence Ċ, shown as
average (solid) and 95% confidence interval (shaded) profiles, over 20 runs. The 95% confidence intervals are constructed from
the bias corrected bootstrap distributions. The alignment between simulated days and actual dates may slightly differ across
separate runs.
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